Skip to main content Skip to secondary navigation
Journal Article

PV power output prediction from sky images using convolutional neural network: The comparison of sky-condition-specific sub-models and an end-to-end model

Photovoltaics (PV), the primary use of solar energy, is growing rapidly. However, the variable output of PV under changing weather conditions may hinder the large-scale deployment of PV. In this study, we propose a two-stage classification-prediction framework to predict contemporaneous PV power output from sky images (a so-called “nowcast”), and compare it with an end-to-end convolution neural network (CNN). The proposed framework first classifies input images into different sky conditions and then the classified images are sent to specific sub-models for PV output prediction. Two types of classifiers are developed and compared: (1) a CNN-based classifier trained on clear sky index (CSI)-labeled sky images and (2) a physics-based non-parametric classifier based on a threshold of fractional cloudiness of sky images. Different numbers of classification categories are also examined. The results suggest that the cloudiness-based classifier is more suitable than the CSI-based classifier for the framework, and the 3-class classification (i.e., sunny, cloudy, overcast) is found to be the optimal choice. We then fine-tune the cloudiness threshold for the non-parametric classifier and tailor the architecture for each sky-condition-specific sub-model. Under the best design, the proposed framework can achieve a root mean squared error (RMSE) of 2.20 kW (relative to a 30 kW rated PV array) on the test set comprising 18 complete days (9 sunny, RMSE = 0.69 kW; 9 cloudy, RMSE = 3.06 kW). Compared with the end-to-end CNN baseline model, the overall prediction performance can be improved by 6% (7% in sunny and 6% in cloudy), with 6% fewer trainable parameters needed in the architecture.

Author(s)
Yuhao Nie
Yuchi Sun
Yuanlei Chen
Rachel Orsini
Adam Brandt
Journal Name
Journal of Renewable and Sustainable Energy
Publication Date
August 25, 2020
DOI
10.1063/5.0014016
Publisher
AIP Publishing