Methane leakage from natural gas systems
Measured rates of natural gas or methane leakage include top-down (atmospheric) and bottom-up (direct) measurements. Results plotted to the right of ratio 1 imply greater methane leakage observed than expected.
Natural gas is a potential "bridge fuel" between the current (largely) fossil-based energy system and a renewable-dominated future energy system. It emits less carbon dioxide during combustion than other fossil fuels and can be used flexibly in many industries. Also, the use of gas turbines may allow flexible grid response in high renewable fraction grids.
However, because of the high global warming potential (GWP) of methane, leakage from natural gas systems can have large impacts on the climate impacts of gas use. Our research agenda in natural gas systems has two key goals:
1. Improve our understanding of the rates and locations of natural gas leakage through systematic synthesis and comparison of research on gas leakage at all scales.
2. Improve leakage detection technology by applying state-of-the-art detection and computational analysis tools to find large leaks of gas in a low-cost fashion.
3. Test methane detection technologies in the field in a fair and unbiased fashion in order to improve our understanding of the performance of various detection options.
Supporting information
Documentation of experimental setup for Rutherford, Sherwin, Brandt field experiments of 2021 [pdf]
Supporting calculations for Brandt et al. 2014: Worksheet v62 as published [xlsx].
Publications
2019
Ravikumar, A.P., Sreedhara, S., Wang, J., Englander, J., Roda-Stuart, D., Bell, C., Zimmerle, D., Lyon, D., Mogstad, I., Ratner, B. and Brandt, A.R., 2019. Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge. Elem Sci Anth, 7(1), p.37. DOI: http://doi.org/10.1525/elementa.373
Wang, J., Tchapmi, L. P., Ravikumar, A. P., McGuire, M., Bell, C. S., Zimmerle, D., Savarese, S., Brandt, A. R. (2020). Machine vision for natural gas methane emissions detection using an infrared camera. Applied Energy, 257, 113998. DOI: https://doi.org/10.1016/j.apenergy.2019.113998
2018
Englander, J.G.; Brandt, A.R.; Conley, S.; Lyon, D.; Jackson, R.B. (2018). Aerial inter-year comparison and quantification of methane emissions persistence in the Bakken formation of North Dakota, USA. Environmental Science & Technology. DOI: 10.1021/acs.est.8b01665
R.A. Alvarez, D. Zavala-Araiza, D.R. Lyon, D.T. Allen, Z.R. Barkley, A.R. Brandt, K.J. Davis, S.C. Herndon, D.J. Jacob, A. Karion, E.A. Kort, B.K. Lamb, T. Lauvaux, J.D. Maasakkers, A.J. Marchese, M. Omara, S.W. Pacala, J. Peischl, A.L. Robinson, P.B. Shepson, C. Sweeney, A. Townsend-Small, S.C. Wofsy, S.P. Hamburg. Assessment of methane emissions from the U.S. oil and gas supply chain. Science. DOI: 10.1126/science.aar7204
*Ravikumar, A.P., J. Wang, M. McGuire, C. Bell, D. Zimmerle, A.R. Brandt. “Good versus Good Enough?” Empirical tests of methane leak detection sensitivity of a commercial infrared camera. Environmental Science & Technology. DOI: 10.1021/acs.est.7b04945
2017
Gvakharia, A., E.A. Kort, M.L. Smith, J. Peischl, J.P. Schwarz, A.R. Brandt, T.B. Ryerson, C. Sweeney. Methane, black carbon, and ethane emissions from natural gas flares in the Bakken Shale, ND. Environmental Science & Technology. DOI: 10.1021/acs.est.6b05183
Ravikumar, A.P., A.R. Brandt. Designing better methane mitigation policies: The challenge of distributed small sources in the natural gas sector. Environmental Research Letters 12 044023
Ravikumar, A.P., Wang, J., Brandt, A.R. Are Optical Gas Imaging Technologies Effective for Methane Leak Detection? (2017) Environmental Science and Technology, 51 (1), pp. 718-724. DOI: 10.1021/acs.est.6b03906.
2016
Kort, E.A., M.L. Smith, L.T. Murray, A. Gvakharia, A.R. Brandt, J. Peischl, T.B. Ryerson, C. Sweeney, K. Travis. Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift. Geophysical research letters. DOI: 10.1002/2016GL068703
Lyon, D.R., R.A. Alvarez, D. Zavala-Araiza, A.R. Brandt, R.B. Jackson, S.P. Hamburg. Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites. Environmental Science & Technology. DOI: 10.1021/acs.est.6b00705
Peischl, J. A. Karion, C. Sweeney, E. A. Kort, M. L. Smith, A.R. Brandt, T. Yeskoo, K.C. Aikin, S.A. Conley, M. Trainer, S. Wolter, and T.B. Ryerson. Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota. Journal of Geophysical Research - Atmospheres. DOI: 10.1002/2015JD024631
*Ravikumar, A.P., J. Wang, A.R. Brandt. Are optical gas imaging technologies effective for methane leak detection? Environmental Science & Technology. DOI: 10.1021/acs.est.6b03906
2014
Brandt A.R., Heath, G.A., Kort, E.A., O'Sullivan, F., Petron, G., Jordaan, S.M., Tans, P., Wilcox, J., Gopstein, A.M., Arent, D., Brown, N.J., Bradley, R., Stucky, G.D., Eardley, D., Harriss, R. (2014). Methane Leaks from North American Natural Gas Systems. Science (343) 733-735. DOI:10.1126/science.1247045
Site content
- Sherwin, Evan, Jeffrey Rutherford, Yuanlei Chen, Sam Aminfard, Eric Kort, Robert Jackson, and Adam Brandt. “Single-Blind Validation of Space-Based Point-Source Detection and Quantification of Onshore Methane Emissions”, Scientific Reports, 13 (March 7, 2023): 3836. https://doi.org/10.1038/s41598-023-30761-2.
- Jing, Liang, Hassan El-Houjeiri, Jean-Christophe Monfort, James Littlefield, Amjaad Al-Qahtani, Yash Dixit, Raymond Speth, Adam Brandt, Mohammad Masnadi, Heather MacLean, William Peltier, Deborah Gordon, and Joule Bergerson. “Understanding Variability in Petroleum Jet Fuel Life Cycle Greenhouse Gas Emissions to Inform Aviation Decarbonization”, Nature Communications, 13, no. 1 (December 21, 2022): 7853. https://doi.org/10.1038/s41467-022-35392-1.
- Zhang, Zhan, Evan Sherwin, Daniel Varon, and Adam Brandt. “Detecting and Quantifying Methane Emissions from Oil and Gas Production: Algorithm Development With Ground-Truth Calibration Based on Sentinel-2 Satellite Imagery”, Atmospheric Measurement Techniques, 15, no. 23 (December 13, 2022): 7155-69. https://doi.org/10.5194/amt-15-7155-2022.
- Sherwin, Evand, Ernest Lever, and Adam Brandt. “Low-Cost Representative Sampling for a Natural Gas Distribution System in Transition”, ACS Omega, 7, no. 48 (November 23, 2022): 43973–43980. https://doi.org/10.1021/acsomega.2c05314.
- Yu, Jevan, Benjamin Hmiel, David Lyon, Jack Warren, Daniel Cusworth, Riley Duren, Yuanlei Chen, Erin Murphy, and Adam Brandt. “Methane Emissions from Natural Gas Gathering Pipelines in the Permian Basin”, Environmental Science & Technology Letters, 9, no. 11 (October 4, 2022): 969–974. https://doi.org/10.1021/acs.estlett.2c00380.
- Kuepper, Lucas, Holger Teichgraeber, Nils Baumgärtner, André Bardow, and Adam Brandt. “Wind Data Introduce Error in Time-Series Reduction for Capacity Expansion Modelling”, Energy, 256 (October 1, 2022): 124467. https://doi.org/10.1016/j.energy.2022.124467.
- Plant, Genevieve, Eric Kort, Adam Brandt, Yuanlei Chen, Graham Fordice, Alan Gorchov Negron, Stefan Schwietzke, Mackenzie Smith, and Daniel Zavala-Araiza. “Inefficient and Unlit Natural Gas Flares Both Emit Large Quantities of Methane”, Science, Report: Methane Emissions, 377, no. 6614 (September 29, 2022): 1566-71. https://doi.org/10.1126/science.abq0385.
- Von Wald, Gregory, Kaarthik Sundbar, Evan Sherwin, Anatoly Zlotnik, and Adam Brandt. “Optimal Gas-Electric Energy System Decarbonization Planning”, Advances in Applied Energy, 6 (June 2022): 100086. https://doi.org/10.1016/j.adapen.2022.100086.
- Teichgraeber, Holger, and Adam Brandt. “Time-Series Aggregation for the Optimization of Energy Systems: Goals, Challenges, Approaches, and Opportunities”, Renewable and Sustainable Energy Reviews, 157 (April 2022): 111984. https://doi.org/10.1016/j.rser.2021.111984.
- Chen, Yuanlei, Evan Sherwin, Elena Berman, Brian Jones, Matthew Gordo, Erin Wetherly, Erik Kort, and Adam Brandt. “Quantifying Regional Methane Emissions in the New Mexico Permian Basin With a Comprehensive Aerial Survey”, Environmental Science & Technology, 56, no. 7 (March 23, 2022): 4317–4323. https://doi.org/10.1021/acs.est.1c06458.
- Shi, Lin, Katharine Mach, Sangwon Suh, and Adam Brandt. “Functionality-Based Life Cycle Assessment Framework: An Information and Communication Technologies (ICT) Product Case Study”, Journal of Industrial Ecology, 26, no. 3 (February 15, 2022): 782-800. https://doi.org/10.1111/jiec.13240 Find it @ Stanford.
- Bell, Clay, Jeff Rutherford, Adam Brandt, Evan Sherwin, Timothy Vaughn, and Daniel Zimmerle. “Single-Blind Determination of Methane Detection Limits and Quantification Accuracy Using Aircraft-Based LiDAR”, Elementa: Science of the Anthropocene, 10, no. 1 (January 4, 2022): 00080. https://doi.org/10.1525/elementa.2022.00080.
- Wang, Jinfang, Jingwei Ji, Arvind Ravikumara, Silvio Savarese, and Adam Brandt. “VideoGasNet: Deep Learning for Natural Gas Methane Leak Classification Using an Infrared Camera” 238 (January 1, 2022): 121516. https://doi.org/10.1016/j.energy.2021.121516.
- Teichgraeber, Holger, Lucas Küpper, and Adam Brandt. “Designing Reliable Future Energy Systems by Iteratively Including Extreme Periods in Time-Series Aggregation”, Applied Energy, 304 (December 15, 2021): 117696. https://doi.org/10.1016/j.apenergy.2021.117696.
- Zhang, Zhan, Evan Sherwin, and Adam Brandt. “Estimating Global Oilfield-Specific Flaring With Uncertainty Using a Detailed Geographic Database of Oil and Gas Fields”, Environmental Research Letters, 16, no. 12 (November 30, 2021): 124039. https://doi.org/10.1088/1748-9326/ac3956.
- El Abbadi, Shar, Evan Sherwin, Adam Brandt, Stephen Luby, and Craig Criddle. “Displacing Fishmeal With Protein Derived from Stranded Methane”, Nature Sustainability, 5 (November 22, 2021): 47–56. https://doi.org/10.1038/s41893-021-00796-2.
- Masnadi, Mohammad, Giacomo Benini, Hassan El-Houjeiri, Alice Milivinti, James Anderson, Timothy Wallington, Robert De Kleine, Valerio Dotti, Patrick Jochem, and Adam Brandt. “Carbon Implications of Marginal Oils from Market-Derived Demand Shocks”, Nature Research, 599, no. 7883 (November 3, 2021): 80–84. https://doi.org/10.1038/s41586-021-03932-2.
- Orsini, Rachel, Philip Brodrick, Adam Brandt, and Louis Durlofsky. “Computational Optimization of Solar Thermal Generation With Energy Storage”, Sustainable Energy Technologies and Assessments, 47, no. 3 (October 2021): 101342. https://doi.org/10.1016/j.seta.2021.101342.
- Rutherford, Jeffrey, Evan Sherwin, Arvind Ravikumar, Gavin Heath, Jacob Englander, Daniel Cooley, Mark Omara, Quinn Lanfitt, and Adam Brandt. “Closing the Methane Gap in US Oil and Natural Gas Production Emissions Inventories”, Nature Communications, 12, no. 1 (August 5, 2021): 4715. https://doi.org/10.1038/s41467-021-25017-4.
- Nie, Yuhao, Ahmed Zamzam, and Adam Brandt. “Resampling and Data Augmentation for Short-Term PV Output Prediction Based on an Imbalanced Sky Images Dataset Using Convolutional Neural Networks”, Solar Energy, 224 (August 2021): 341-54. https://doi.org/10.1016/j.solener.2021.05.095.