Skip to main content Skip to secondary navigation

Methane leakage from natural gas systems

Main content start
Methane Leak using infrared camera & displaying measurements
A single frame of a methane leak taken using an infrared camera (top) and modeled image of the methane leak as seen above (bottom)
Imaging of methane leaks using infrared camera
Imaging methane leaks using an infrared camera.

Measured rates of natural gas or methane leakage include top-down (atmospheric) and bottom-up (direct) measurements.  Results plotted to the right of ratio 1 imply greater methane leakage observed than expected.

Natural gas is a potential "bridge fuel" between the current (largely) fossil-based energy system and a renewable-dominated future energy system. It emits less carbon dioxide during combustion than other fossil fuels and can be used flexibly in many industries. Also, the use of gas turbines may allow flexible grid response in high renewable fraction grids.

However, because of the high global warming potential (GWP) of methane, leakage from natural gas systems can have large impacts on the climate impacts of gas use. Our research agenda in natural gas systems has two key goals:

1. Improve our understanding of the rates and locations of natural gas leakage through systematic synthesis and comparison of research on gas leakage at all scales.

2. Improve leakage detection technology by applying state-of-the-art detection and computational analysis tools to find large leaks of gas in a low-cost fashion.

3. Test methane detection technologies in the field in a fair and unbiased fashion in order to improve our understanding of the performance of various detection options.

Supporting information

Documentation of experimental setup for Rutherford, Sherwin, Brandt field experiments of 2021 [pdf]

Supporting calculations for Brandt et al. 2014: Worksheet v62 as published [xlsx].

Publications

2019

Ravikumar, A.P., Sreedhara, S., Wang, J., Englander, J., Roda-Stuart, D., Bell, C., Zimmerle, D., Lyon, D., Mogstad, I., Ratner, B. and Brandt, A.R., 2019. Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge. Elem Sci Anth, 7(1), p.37. DOI: http://doi.org/10.1525/elementa.373

Wang, J., Tchapmi, L. P., Ravikumar, A. P., McGuire, M., Bell, C. S., Zimmerle, D., Savarese, S., Brandt, A. R. (2020). Machine vision for natural gas methane emissions detection using an infrared camera. Applied Energy, 257, 113998. DOI: https://doi.org/10.1016/j.apenergy.2019.113998

2018

Englander, J.G.; Brandt, A.R.; Conley, S.; Lyon, D.; Jackson, R.B. (2018). Aerial inter-year comparison and quantification of methane emissions persistence in the Bakken formation of North Dakota, USA. Environmental Science & Technology. DOI: 10.1021/acs.est.8b01665

R.A. Alvarez, D. Zavala-Araiza, D.R. Lyon, D.T. Allen, Z.R. Barkley, A.R. Brandt, K.J. Davis, S.C. Herndon, D.J. Jacob, A. Karion, E.A. Kort, B.K. Lamb, T. Lauvaux, J.D. Maasakkers, A.J. Marchese, M. Omara, S.W. Pacala, J. Peischl, A.L. Robinson, P.B. Shepson, C. Sweeney, A. Townsend-Small, S.C. Wofsy, S.P. Hamburg. Assessment of methane emissions from the U.S. oil and gas supply chainScience. DOI: 10.1126/science.aar7204

*Ravikumar, A.P., J. Wang, M. McGuire, C. Bell, D. Zimmerle, A.R. Brandt. “Good versus Good Enough?” Empirical tests of methane leak detection sensitivity of a commercial infrared camera. Environmental Science & Technology. DOI: 10.1021/acs.est.7b04945

2017

Gvakharia, A., E.A. Kort, M.L. Smith, J. Peischl, J.P. Schwarz, A.R. Brandt, T.B. Ryerson, C. SweeneyMethane, black carbon, and ethane emissions from natural gas flares in the Bakken Shale, NDEnvironmental Science & Technology. DOI: 10.1021/acs.est.6b05183 

Ravikumar, A.P., A.R. BrandtDesigning better methane mitigation policies: The challenge of distributed small sources in the natural gas sectorEnvironmental Research Letters 12 044023 

Ravikumar, A.P., Wang, J., Brandt, A.R. Are Optical Gas Imaging Technologies Effective for Methane Leak Detection? (2017) Environmental Science and Technology, 51 (1), pp. 718-724. DOI: 10.1021/acs.est.6b03906.

2016

Kort, E.A., M.L. Smith, L.T. Murray, A. Gvakharia, A.R. Brandt, J. Peischl, T.B. Ryerson, C. Sweeney, K. TravisFugitive emissions from the Bakken shale illustrate role of shale production in global ethane shiftGeophysical research letters. DOI: 10.1002/2016GL068703

Lyon, D.R., R.A. Alvarez, D. Zavala-Araiza, A.R. Brandt, R.B. Jackson, S.P. HamburgAerial surveys of elevated hydrocarbon emissions from oil and gas production sitesEnvironmental Science & Technology. DOI: 10.1021/acs.est.6b00705

Peischl, J. A. Karion, C. Sweeney, E. A. Kort, M. L. Smith, A.R. Brandt, T. Yeskoo, K.C. Aikin, S.A. Conley, M. Trainer, S. Wolter, and T.B. RyersonQuantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North DakotaJournal of Geophysical Research - Atmospheres. DOI: 10.1002/2015JD024631 

*Ravikumar, A.P., J. Wang, A.R. Brandt. Are optical gas imaging technologies effective for methane leak detection? Environmental Science & Technology. DOI: 10.1021/acs.est.6b03906 

2014

Brandt A.R., Heath, G.A., Kort, E.A., O'Sullivan, F., Petron, G., Jordaan, S.M., Tans, P., Wilcox, J., Gopstein, A.M., Arent, D., Brown, N.J., Bradley, R., Stucky, G.D., Eardley, D., Harriss, R. (2014). Methane Leaks from North American Natural Gas SystemsScience (343) 733-735. DOI:10.1126/science.1247045

Site content